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ML for Data selection

• ML based R&D plans for Data Selection interested some 
undergrad students. 


“For DS you either go around checking different possible TCs and how to ensure, which 
threshold,  you use to form a trigger decision or you use a few students/life to evaluate all 
possibilities == train a NN to do it.” 

• This was setup as preliminary studies (MPhys projects), 
unfortunately COVID-19 brought it to an abrupt end (hopefully 
just a pause).


• We would like to continue this studies trying to use TC to NN. 
With possible outputs as: TDecision, event classification (HLF), 
ROI (#APA, time window …), early pointing resolution …
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Motivation (MPhys projects)
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Event classification using deep learning

• 20k Marley + gaushit 
generated SN + 20k 
radiological events into 
2D hits histograms 
(1500x1500 pixels)
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Background

PyTorch CNN 
Batch size 128
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Facebook's SparseConvNet

Intel R Xeon R Gold 5120 Processor.
14 cores and 196 GB of RAM.
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Event classification using deep learning
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Neural networks for event reconstruction 

• Graph network for pattern 
recognition 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Pattern recognition

• Uses hits as inputs (wire position, drift 

time, width, amplitude, collected 

charge)

• Cluster hits coming from same particle 

together – wire position and drift time 

give 2D image (“view”)

• Identify interaction vertices

• Identify hierarchies (parent-daughter 

links)

• Match 2D clusters into 3D trajectories
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A. Smith, The Pandora multi-algorithm approach to pattern recognition (slides DESY, 16/9/2019)

X plane

Graph neural networks (GNNs)

• Graph is a set of nodes with some features, with edges describing 
relationships between them
• Natural representation of LArTPC data:

• Nodes = hits
• Node features = hit wire, hit time
• Edges connect hits into clusters/tracks
• Edge features: distance between hits (in wire and time)

• Variable input size (number of hits in event)
• Efficient representation of sparse data
• Can classify nodes, edges or whole graph
• My GNN: classify edges as correct or wrong connections
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GNN

Edge-classifying GNN architecture

• 2 multi-layer perceptron components:
• Edge network computes weights for every edge using the features of the two nodes 

it connects
• Node network computes new features for every node using aggregated features of 

edges
• Each has 2 hidden layers with 128 nodes and ReLU activation

• 8 iterations; each propagates features from each node further through 
graph
• Sigmoid activation on final layer
• Implemented using DeepMind’s graph_nets
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Input net Edge net Node net Edge net Node net … Edge net
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Neural networks for event reconstruction 
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Simulation

• LArSoft
• Monte Carlo generator
• Particle propagation and interactions 

in LAr
• Detector effects

• Detector: 
• Geometry: 1 × 2 × 6 APAs
• 24 frames with 480 collection wires 

each

• Generated 1000 isotropic muons 
with energy 0.1 GeV – 5 GeV
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Graph construction

• Separate graph for each frame, only collection wires
• Discarded graphs with < 4 nodes
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Target definition

• To be labelled 1, an edge must connect hits 
within track in order of time, but:
• Can’t jump back and forth by more than 4 wires
• Can’t be more than 3 times longer than previous 

and subsequent ones

• Each hit can only
connect to one hit
further in time
• Else label is 0
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Neural networks for event reconstruction 
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GNN training

• 2147 graphs split into 3 sets:
• Training: 56%
• Validation: 14%
• Testing: 30%

• Train target:
• 360 000 true edges
• 9.5 million fake edges
• True/fake ratio: 0.04

• Loss: binary cross entropy, with 
weight of 0.04 for false edges 
• Batches of 9
• 65 epochs
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GNN output – training data

• Best cut on model output: 0.47 (TPR = 99.7%, FPR = 0.3%)
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GNN results – test data

• Accuracy with discrimination threshold of 0.47: 99.7%
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fake edges
true edges Confusion matrix (normalised by true label):
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ML for Data selection

• Two studies of the implementation of NN for event classification and 
reconstruction performed.


• The comparison of SparseNN and CNN was not fully completed but 
laid out a starting point.


• Successful implementation of a GraphNN, larger data set would be 
needed for better performance studies.


• Although results shown are encouraging, there’s still lots to do. We’ll 
take over with improvements (apart form fixing things): 
Metric comparison, Trigger candidates …
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Summary


